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In the present work, a theoretical model of the appearance of acoustic waves in dissolution of sub-
stances is suggested.

According to [1], the processes of crystallization and melting of a substance are accompanied by acous-
tic emission. Since upon melting and dissolution of a solid, passage of the latter to the liquid phase is ob-
served, then by analogy it might be expected that the dissolution process will also be accompanied by acoustic
emission. In [2, 3], the appearance of acoustic waves in dissolution of substances was revealed experimentally
and regularities of the change in the parameters of the acoustic emission with the concentration of the solution
and its temperature were established; however, in the literature, there is no information on the mechanism of
the appearance of acoustic emission in dissolution of substances in a liquid.

In this paper, an attempt is made to simulate this phenomenon mathematically.
As is known, in dissolution of a solid substance in a liquid the volume of the solution is not equal to

the sum of the volumes of the pure solvent and the solute, i.e., the partial molecular volumes of the solute
differ from the partial volumes of the molecules in the solid state. This change in the volume equals [4]

∆V = nkT 
∂ ln C0

∂p
 . (1)

Formula (1) holds true only for weak solutions; the quantity ∆V can be both positive and negative depending
on the sign of the derivative ∂ ln C0

 ⁄ ∂p. If with increase in the pressure the substance solubility grows, then
∆V < 0.

At the current stage of the development of the theory there is no reliable evaluation of the change in
the specific volume of the solute in the liquid; therefore one is forced to be guided only by experimental data.
Thus, for example, at a temperature of 298.1 K the partial molecular volume of ammonia in water is 12.5%
smaller than its usual molecular volume, whereas the volume of hydrogen fluoride in the same solvent is 50%
greater than its usual volume [5].

In Table 1, borrowed from [5], we present the partial molecular volumes of the solute and the solvent
in some aqueous solutions.

It is evident from the data of Table 1 that with increase in the concentration of the solute in the sol-
vent, the partial molecular volumes V1 of the latter decrease insignificantly and this decrease can be ignored.
On the other hand, the partial molecular volumes of the solute change noticeably. This change for sugar can
be represented in the form

V2
∗  ⋅ 1024 = V2 ⋅ 1024 


1 + 

8.7
348.6

 C


 ,

and for ammonia, in the form
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V2
∗  ⋅ 1024 = V2 ⋅ 1024 


1 − 

5.5
40.57

 C


 .

We rewrite the last formulas in the following manner:

∆V ⁄ V = ℜ C , (2)

where ℜ   = 2.4⋅10−2 for sugar and ℜ  = −0.14 for ammonia.
Thus, in dissolution of sugar in water the volume of the system increases, while in dissolution of am-

monia, it decreases.
In the dissolution of a solid substance in a liquid the narrow zone in which detachment of molecules

of the solid substance and their passage into solution occur, is a zone of disturbance of the liquid density.
The density change in this zone will extend over the entire volume of the liquid in the form of acoustic

signals; in other words, from the zone of dissolution of the substance, emission of acoustic waves will occur.
As a model of propagation of acoustic waves from the zone of dissolution of substances in a liquid,

we consider a cylindrical vessel filled with a solvent at the bottom of which a solid substance with a thickness
identical in all directions is located. The scheme of the dissolution of the substance is given in Fig. 1.

Suppose that h0 is the initial thickness of the layer of the solid and h is the height of the liquid layer.
When t = 0, a barrier between the liquid and the solid is removed and from this instant of time the process of
dissolution of the solid substance in the liquid begins. Now we formulate the corresponding mathematical prob-
lem.

The concentration of the solution is described by the diffusion equation

∂C

∂t
 = D 

∂2C

∂x2  ,   ξ < x < h , (3)

where D is the diffusion coefficient of molecules of the solid substance in the solvent.
The solution of Eq. (3) must satisfy the following conditions:

C (ξ, t) = C0 , (4)

TABLE 1. Partial Molecular Volumes of the Solute and the Solvent in Some Aqueous Solutions

Solution
density, g/ml

Weight fraction
of the solute, g/g

Concentration of
the saturated

solution, g/ml

Partial molecular volumes Apparent molecular
volume of the solute,

V2
∗ ⋅1024 mlsolvent, V1

∗ ⋅1024 ml solute, V2
∗ ⋅1024 ml

Sugar at 298.1 K
0.99709 0 0 29.803 348.54 348.54
1.03679 0.1 0.103679 29.795 350.09 349.40
1.07940 0.2 0.215880 29.780 351.80 350.28
1.12517 0.3 0.337551 29.749 353.69 351.34
1.17439 0.4 0.469756 29.698 355.44 352.49
1.22732 0.5 0.613660 29.611 357.41 353.67

Ammonia at 288 K
0.980 0.0468 0.0459 29.73 39.74 40.32
0.960 0.080 0.941 29.75 39.63 40.01
0.940 0.1540 0.1447 29.79 39.21 39.72
0.920 0.2120 0.1950 29.88 38.74 39.60
0.900 0.2780 0.2501 30.12 38.12 39.31
0.980 0.3550 0.3123 30.63 37.27 38.87
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∂C
∂x



 x=h

 = 0 , (5)

i.e., the upper boundary is impenetrable to molecules of the dissolving substance.
The lower boundary of the integration domain of Eq. (1) is mobile; here, the law of motion of this

limit is not given in advance, and it must be found in the process of solving the problem. Thus, we have a
typical Stefan problem.

In the experiments, the thickness h of the solution layer is about 0.1−0.2 m. The time needed for es-
tablishment of the equilibrium concentration (the relaxation time) τ in the solution is equal to h2 ⁄ D. Usually,
the coefficient D ~   10−9 m2/sec, and then τ ~   107 sec.

These evaluations show that, in the time of the experiment (of the order of an hour), virtually no mole-
cules of the dissolving substance reach the solution surface; in other words, it can be assumed that h ~   ∞ and
instead of the condition ξ < x < h we obtain ξ < x < ∞, while at infinity C = C∞, C∞ is the initial concentration
of the solvent. (Frequently, the solvent contains impurities, for example, a small amount of table salt is present
in drinking water; therefore we will consider the case where C∞ ≠ 0).

Thus, instead of condition (5) we give

C_x=∞ = C∞ . (6)

The initial conditions have the form

C (x, 0) = C∞ ,   ξ < x < ∞ . (7)

Problem (3)-(7) is already self-similar, i.e., in its conditions the length does not appear. We write the
solution of Eq. (3) in the following manner:

C = C∞ + 
C0 − C∞

Φ∗  (α)
 Φ∗  





X

2 √ Dt




 ,   ξ < x < ∞ , (8)

where Φ∗  = 1 − Φ(x). Here the law of motion of the solution−solid interface has the form

ξ = 2α √ Dt  , (9)

where α is determined from the equation

Fig. 1. Scheme of dissolution of a substance
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C0 − C∞

Φ∗  (α)
 exp (− α2) = 2αC0 . (10)

Equation (10) is transcendental. The coefficient α is usually small; therefore, in a first approximation,
from Eq. (10) we obtain

α = 
1

2
 



1 − 

C∞
C0




 . (11)

In 1 sec, the solid−solution interface moves a distance equal to ξ; here, the relative volume of the
system changes by a quantity β determined from formula (2), β = ℜ  (C0 − C∞).

Thus, it can be considered that the lower boundary of the liquid moves according to the law

u_x=ξ = β ξ (t) . (12)

As a result of the motion of the lower boundary of the liquid, the latter will execute vibrational motion,
i.e., in the liquid a system of standing waves with different frequencies that are multiples of the fundamental
frequency ν = a ⁄ 2h is established. To find the parameters of these waves, we must solve the wave equation

∂2u

∂t2
 = a2 

∂2u

∂x2 ,   ξ < x < h , (13)

which should satisfy the conditions

u (x, 0) = 0 ,   ut (x, 0) = 0 ; (14)

u (ξ, t) = β ξ (t) . (15)

Let us assume that the solvent surface is open. Then we will have

∂u
∂x



 x=h

 = 0 . (16)

Boundary condition (15) is inhomogeneous. In order that the method of separation of variables can be
applied to problem (13)-(16), we reduce it to a problem with homogeneous boundary conditions. For this pur-
pose, we will seek the function u(x, t) in the form of the sum

u (x, t) = β ξ (t) + ϑ (x, t) , (17)

where ϑ(x, t) is the solution of the following problem:

∂2ϑ
∂t2

 = α2 
∂2ϑ
∂x2  − βξ

..
 ,   ϑ (x, 0) = 0 ,   ϑ t (x, 0) = − βξ

.
 ,   

ϑ (ξ, t) = 0 ;   
∂ϑ
∂x



 x=h

 = 0 .

(18)

The functions X(x) = sin λnx − tan λnξ cos λnx, where λn = π(2n + 1)/(n − ξ)2, are eigenfunctions of
problem (18). The square of the norm of the eigenfunctions is equal to
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&Xn
2
& = 

h − ξ
2

 (1 + tan2 λnh) .

The solution of problem (18) can be represented in the form

ϑ (x, t) = − β  ∑ 

n=0

∞

 
cos λn (h − ξ)

λn &Xn
2
&

 






∫ 
0

t

ξ
.
 (τ) cos ωn (t − τ) dτ







 Xn (x) , (19)

where

ωn = aλn = 
πa (2n + 1)

2 (h − ξ)
 .

Substituting the value of ξ
.
(t) from Eq. (9) into Eq. (19), we obtain

ϑ (x, t) = − 
β (C0 − C∞)

2C0

 √D    ∑ 

n=0

∞

 
cos λn (h − ξ)

λn &Xn
2
&

 ×

× 






∫ 
0

t
1

√τ
 cos ωn (t − τ) dτ







 Xn (x) . (20)

It can be shown that on the right-hand side of Eq. (20) the integral is

J = ∫ 
0

t
cos ωn (t − τ) dτ

√τ
 = 

√ 2π

√ ωn

 [C (ωnt) cos ωnt + S (ωnt) sin ωnt] . (21)

As is known [6], for z = ωnt >> 1 the following asymptotic formulas hold:

S (z) = 
1

2
 − 

cos z

√ 2πz
 ,   C (z) = 

1

2
 + 

sin z

√ 2πz
 . (22)

Substitution of Eq. (22) into Eq. (21) yields

J ≈ 
√π

√  2ωn

 [cos ωnt + sin (ωnt)] .

Thus, for ϑ(x, t) we will have

ϑ  (x, t) = − 
β (C0 − C∞) √ Dπ

2 √2 C0

  ∑ 
0

∞

 
cos λn (h − ξ)

λn &Xn
2
& √ωn

 (cos ωnt + sin ωnt) Xn (x) .

Finally, for u(x, y) we write

 u (x, t) = β ξ (t) − 
β (C0 − C∞)

2C0

 √



πD

2




  ∑ 

n=0

∞

 
cos λn (h − ξ)

λn &Xn
2
& √ωn

 ×

× (cos ωnt + sin ωnt) Xn (x) . (23)
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The first term of equality (23) gives the displacement of the interface of solution−solid substance, and the sec-
ond, the vibrational motion of the solution.

Usually, in experiments ξ << h; therefore, in Eq. (23) the quantity ξ can be ignored compared to h.
Then we obtain

u (x, t) = β ξ (t) + 
2β (C0 − C∞)

πC0

 √



Dh

a




  ∑ 

n=0

∞

 
(− 1)n

(2n + 1)3 ⁄ 2
 ×

× (cos ωnt + sin ωnt) sin 
π (2n + 1)x

2h
 .

The additional dynamic pressure can be found from the equality

p (x, t) = − 
1
K

 
∂u

∂x
 .

Hence we will have

p (x, t) = 
β (C0 − C∞)

KC0

 √



D

2ah




  ∑ 

n=0

∞

 
(− 1)n

(2n + 1)1 ⁄ 2
 sin 




ωnt + 

π

4




 ×

× cos 
π (2n + 1) x

2h
 . (24)

The fundamental frequency is ω1 = πa ⁄ 2h; for water, a = 1500 m/sec, and the characteristic value of
h is equal to 0.1 m. Then we obtain ω1 = 2⋅104 sec−1, i.e., the fundamental frequency is ν1 ~   104 sec−1.

From Eq. (24) it follows that the maximum amplitude of the pressure in the acoustic wave is equal to

pmax ≈ 
β (C0 − C∞)

KC0
 √




D
2ah




 .

For sugar, β = 10−2 and D ~   10−9 m2/sec; for water, 1/K = 109 Pa. Then for h = 0.1 m we obtain
p ~   102 Pa, which is in good agreement with experimental data of [2, 3].

However, the value of the frequency ω is 1-2 orders of magnitude smaller than the experimental data
for this frequency. The picture of the behavior of the function p(x, t) in the experiments leads us to the idea
of the existence of resonance phenomena in dissolution of solid substances in a liquid. Therefore, the above
model of the appearance of acoustic emission in dissolution of substances needs some correction, for which
purpose, apparently, it is necessary to also take into account the vibrational motion of the solid substance.

NOTATION

n, number of atoms of the solute per unit volume; C0 = n ⁄ N, concentration of the saturated solution;
N, number of solvent molecules per unit volume; C, concentration; β, coefficient of volumetric expansion of
the substance; ℜ , coefficient of volumetric expansion of individual molecules in passage from the solution to
the solid phase; ξ, coordinate of the solid−liquid interface; τ, delay time; Φ(x), error integral; ν, frequency of
vibrations of the standing waves; a, speed of sound in the solvent; S(z) and C(z), Fresnel integrals; u(x, t),
longitudinal displacement of a liquid particle in the acoustic wave; T, absolute temperature; K, coefficient of
liquid compressibility; p(x, t), dynamic pressure; points above a symbol denote differentiation with respect to
time.
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